Lecture 41

Encodings (contd.), Computers vs Turing machine, Halting Problem

Too Many Problems, Too Few TMs

Notations:

» Forany a € {0,1}*, M denotes the TM whose encoding is a.

» (M) denotes the encoding of a TM M.
» (M) denotes the language of a TM M, i.e., the set of inputs that are accepted by M.

Theorem: There exist languages that cannot be decided/recognised by any TM.

Proof Sketch: 0

Multiset of TMs

(Countable infinite) 11001100 ——eme——\—
1111“'110000‘“~,‘“_w~’HW/J_CA;]

Set of langquages
(Uncountable)

Computer vs Turing Machine

Simulating a Computer by Turing machine

High-level language programs can be translated into a assembly language program which is
a finite sequence of instructions of type:

> Move data from memory into registers or vice-versa.

> Add or multiply the content of two registers into some register.

insty [insty | - | reg | regy | - JOJT]1]ujul-

Assembly language program can be simulated in a TM by:

> Allocating portions of tape for registers and memory.

> Storing instructions on tapes.

» Executing instructions using o.

Computer vs Turing Machine

Simulating a Turing machine by Computer
A C program with infinite memory can be written that simulates a Turing machine where:
> An infinite array can act as the tape of the TM.

» Transition function’s entries can be stored in a finite 2-dimensional array.

Equal Power but Different Roles

> High-level languages are used to demonstrate an effective procedure that decides

a given language because they are user-friendly.

> Turing machines are used to prove non-existence of an (efficient) effective procedure that

decides a given language because of their simple mathematical structure.

Halting Problem

Definition: A TM that halts, i.e., either accepts or rejects, on every input is called a
Halting Turing Machine.

Halting Problem: HALT = {(a, x) | M, halts on input x}

Theorem: HALT is undecidable.

Undecidability of HALT

Suppose a TM M decides HALT = {(a, x) | M, halts on input x}.

— lOOP (M, halts on a.)
[T

acc (M, halts on x.)
\ (M, doesn’t halt on x.)

rej rej (M, doesn’t halt on a.)

| Transformation 1 ;
‘ What happens when M" gets (M")?

» M" enters into a loop on (M")

acc (M, halts on a.) —> M" halts on (M")

I // “
rej (M, doesn’t halt on a.) > M" rejects on (M") C’ﬂo

—> M" dowét«ﬂ It on (M")

Recognising HALT

Theorem: HALT = {(a, x) | M halts on input x} is recognisable.

- tape of M, and binary encoding

» Starts simulating M, on x.
9 Ma to store symbols of M.,
> If M, ever halts on x, U halts and accepts.

> If M, never halts on x, U does not halt as well.

Clearly, L(U) = HALT.

The Big Picture

HALT

| —— Unrecognisable Languages

HALT

Set of Languages ———+

4 0" 172" |
' ——— Decidable Languages

Context Free Languages

V4 Reqular Languages

