
Lecture 41

Encodings (contd.), Computers vs Turing machine, Halting Problem



Too Many Problems, Too Few TMs

‣ For any ,  denotes the TM whose encoding is .


‣  denotes the encoding of a TM .


‣  denotes the language of a TM , i.e., the set of inputs that are accepted by .

α ∈ {0,1}* Mα α
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Notations:

Theorem: There exist languages that cannot be decided/recognised by any TM.
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Computer vs Turing Machine
Simulating a Computer by Turing machine

High-level language programs can be translated into a assembly language program which is 

a finite sequence of instructions of type: 

‣ Move data from memory into registers or vice-versa.

‣ Add or multiply the content of two registers into some register.

Assembly language program can be simulated in a TM by:

‣ Allocating portions of tape for registers and memory.

‣ Storing instructions on tapes.
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… reg2
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‣ Executing instructions using .δ



Simulating a Turing machine by Computer

A C program with infinite memory can be written that simulates a Turing machine where:

‣ An infinite array can act as the tape of the TM.

‣ Transition function’s entries can be stored in a finite -dimensional array.2

Computer vs Turing Machine

Equal Power but Different Roles

‣ High-level languages are used to demonstrate an effective procedure that decides

‣ Turing machines are used to prove non-existence of an (efficient) effective procedure that

a given language because they are user-friendly.

 decides a given language because of their simple mathematical structure.



Halting Problem

Definition: A TM that halts, i.e., either accepts or rejects, on every input is called a 

Halting Turing Machine.

Halting Problem: HALT   halts on input = {(α, x) ∣ Mα x}

Theorem: HALT is undecidable.



Suppose a TM  decides HALT   halts on input .M = {(α, x) ∣ Mα x}
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Recognising HALT

Theorem: HALT   halts on input  is recognisable.= {(α, x) ∣ Mα x}
Proof: Consider a TM  that on input :U (α, x)

‣ Starts simulating  on .Mα x

‣ If  ever halts on ,  halts and accepts.Mα x U

‣ If  never halts on ,  does not halt as well.Mα x U

Clearly,   HALT.L(U) =

 uses portion of its tape as the 
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U
Mα

Mα

◼



The Big Picture
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