
Lecture 41

Encodings (contd.), Computers vs Turing machine, Halting Problem

Too Many Problems, Too Few TMs

‣ For any , denotes the TM whose encoding is .

‣ denotes the encoding of a TM .

‣ denotes the language of a TM , i.e., the set of inputs that are accepted by .

α ∈ {0,1}* Mα α

⟨M⟩ M
L(M) M M

Notations:

Theorem: There exist languages that cannot be decided/recognised by any TM.

Proof Sketch: 0
1
⋮

110011…00
1111…110000

⋮

Multiset of TMs

L1 L2

Lk
Li

Lj

Set of languages
(Countable infinite) (Uncountable)

Computer vs Turing Machine
Simulating a Computer by Turing machine

High-level language programs can be translated into a assembly language program which is

a finite sequence of instructions of type:

‣ Move data from memory into registers or vice-versa.

‣ Add or multiply the content of two registers into some register.

Assembly language program can be simulated in a TM by:

‣ Allocating portions of tape for registers and memory.

‣ Storing instructions on tapes.

inst1 inst2 … reg1
… reg2

… 10 1 ⊔ ⊔ …

‣ Executing instructions using .δ

Simulating a Turing machine by Computer

A C program with infinite memory can be written that simulates a Turing machine where:

‣ An infinite array can act as the tape of the TM.

‣ Transition function’s entries can be stored in a finite -dimensional array.2

Computer vs Turing Machine

Equal Power but Different Roles

‣ High-level languages are used to demonstrate an effective procedure that decides

‣ Turing machines are used to prove non-existence of an (efficient) effective procedure that

a given language because they are user-friendly.

 decides a given language because of their simple mathematical structure.

Halting Problem

Definition: A TM that halts, i.e., either accepts or rejects, on every input is called a

Halting Turing Machine.

Halting Problem: HALT halts on input = {(α, x) ∣ Mα x}

Theorem: HALT is undecidable.

Suppose a TM decides HALT halts on input .M = {(α, x) ∣ Mα x}

Undecidability of HALT

M
α
x

acc

rej

(halts on .)Mα x

(doesn’t halt on .)Mα x

M′￼α
acc

rej

(halts on .)Mα α

(doesn’t halt on .)Mα α

M′￼′￼α
loop

rej

(halts on .)Mα α

(doesn’t halt on .)Mα α

Transformation 1

Transformation 2

Con
trad

ictio
n!

What happens when getsM′￼′￼

‣ enters into a loop onM′￼′￼

‣ rejects on M′￼′￼

⟹

 ⟹

 halts on

does not halt on

⟨M′￼′￼⟩
M′￼′￼

M′￼′￼ ⟨M′￼′￼⟩

⟨M′￼′￼⟩

⟨M′￼′￼⟩

?⟨M′￼′￼⟩

Recognising HALT

Theorem: HALT halts on input is recognisable.= {(α, x) ∣ Mα x}
Proof: Consider a TM that on input :U (α, x)

‣ Starts simulating on .Mα x

‣ If ever halts on , halts and accepts.Mα x U

‣ If never halts on , does not halt as well.Mα x U

Clearly, HALT.L(U) =

 uses portion of its tape as the
tape of and binary encoding

to store symbols of .

U
Mα

Mα

◼

The Big Picture

02n

0n1n

0n1n2n

HALT

HALT

Regular Languages

Context Free Languages

Decidable Languages

Recognisable Languages

Unrecognisable Languages

Set of Languages

